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ABSTRACT
For distributed software systems, ensuring their availabil-
ity under intentional attacks is critical. Traffic analysis,
conducted by the attacker, could reveal the protocol being
carried out by the components. Furthermore, having
inferred the protocol, the attacker can use the pattern of
the messages as a guide to the most critical components. We
thwart these directed attacks by using message forwarding
to reduce traffic differences, thus diverge attackers from
targeted attack to random attack, which probabilistically
prolongs the availability of important components in the
system. The simulation results also show that message
forwarding effectively balance the traffic flow and hence
indicate the validity of our approach.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Reliability,
Availability, and Serviceability; D.4.6 [OPERATING SYS-
TEMS]: Security and Protection—Information flow con-
trols

General Terms
Reliability

Keywords
Message Forwarding, Availability, Traffic Analysis, Complex
Distributed Software System

1. INTRODUCTION
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Our society is increasingly dependent on distributed
software systems which, on the other hand, often become
the targets of malicious attacks. In order to survive against
intentional attack, as pointed out by Li et al. [15], we
should prevent attackers from learning “secret” information
about the systems. Hence, creating an elusive target has
become a research thrust. Frequency hopping [2] and n-
version programming [5, 3] are examples of using known
approaches to address the increasingly hostile environment
created by attackers. Research in complex network systems’
vulnerability to attacks [21, 1, 6, 4] also show that if certain
amount of information about the network is hidden, the
system’s survivability against intentional attacks can be
greatly improved [20].

Traffic pattern within a network often reveal different
components’ characteristics [22] in a system. If such
information is not protected, attackers can easily figure out
the locations of more important components through traffic
analysis, irrespective to whether important components
have more traffic or not. For instance, a log server
component is relative less important, but receives more
messages than other components in the system; whereas in
the 2-phase commit protocol there are many cohorts but
only one coordinator which is the critical node and has more
communication in the system.

To render attackers’ traffic analysis efforts less effective,
the technique of traffic padding [22, 8] is used to disguise
a network communications protocol. It creates a uniform
level of traffic, so an attacker cannot discern what protocol
is in use and hence exploit the protocol’s vulnerabilities.
However, complex distributed software systems are often
modeled and built by distributed components that com-
municate with each other through messages [19, 16]. For
systems that are reconfigurable (to obscure the system from
attack), the deployment of components in a distributed
system is not constant. Hence, it is not possible to know,
a priori, what communications protocol the links between
components can support. Traffic padding does not support
this granularity of control. We hence need to raise traffic
padding from a networking technique to one that is more
appropriate for a distributed system whose designers employ
multiple levels of system abstraction to handle the system’s
complexities.

The rest of the paper is organized as follows. Section 2
discusses related work. The detailed discussion about
applying information hiding principle to improve complex
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distributed software systems’ availability is presented in
Section 3. Section 4 discusses simulation and experiment
results. We conclude and point out future work in Section 5.

2. RELATED WORK
In order for a distributed system executing in an open

environment to survive from attacks, a straightforward and
commonly used approach is to use redundancy. If a primary
component is compromised, the backup spares take over the
work and maintain the availability of the system. However,
this solution not only increases the cost of the system, but
also over time the redundancy itself may contribute to the
decrease of system dependability [18].

Levitin et al. [14] analyze how to maintain system avail-
ability with fixed resources despite the presence of external
attacks. In their model, a system is composed of identical
elements and the defender uses redundancy by deploying
more genuine elements than needed. The defender may
use the resource budget to strengthen the protection of
the individual genuine elements or deploy false targets (i.e.,
decoys) to lure the attacker away from genuine elements.
Optimal resource allocation strategies that cope with differ-
ent attack situations are then analyzed. Hausken et al. [11]
further explicate an optimal distribution of fixed resources
to maximize availability of series systems through the
protection of individual genuine elements and deployment
of false targets. In [9, 10] the optimal defense resource
allocation is determined in order to maximize availability
of homogeneous parallel system from attacks through the
combination of protection and redundancy or false targets
and redundancy.

Our approach differs from the aforementioned research in
two aspects. First, we extend system’s availability without
introducing new components, such as enhanced protection,
replicas, etc., into the systems. Second, we do not assume
software components are homogeneous. Rather, we focus on
the diversities of components in the system.

Onion Routing [7] is used to resist eavesdropping, traffic
analysis and other attacks both from outsiders and insiders.
It is a good approach to prevent attackers from getting to
know about the system’s network topology. Our approach
goes beyond Onion Routing in the sense that when attackers
have successfully figured out the network topology, we can
still protect the system by prolonging the time the attackers
need to compromise the system.

In [12], we propose a coordination model to improve
software system attack-tolerance and survivability in open
hostile environment. Survivable feedback loops are built in
this distributed coordination model to exclude the faulty
entities from the system and protect the system from being
broken down by single failures. However, our earlier work
focuses on expelling faulty components from the system in
order to eliminate their anomalous behaviors and thereby
improve system survivability. While our current approach
aims at preventing attackers from quickly identifying and
attacking the core components rather than tolerating the
faults caused by the attack.

3. APPLY INFORMATION HIDING TO IM-
PROVE COMPLEX DISTRIBUTED SOFT-
WARE SYSTEMS’ AVAILABILITY

In this section, we first define the system model and state
the assumptions to be used in the paper. We then formulate
complex distributed software systems’ availability problem
and provide our solutions.

3.1 System Model and Assumptions
A complex distributed software system is modeled as

a set of asynchronous, autonomous, and heterogeneous
software components that communicate with each other
through messages. We assume that not all components
are equally important and the amount of communications
flowing through different components are different. There
is a small set of components that are critical to the
functioning of the system. These components are called
core components. The physical nodes which contain core
software components are called core nodes. The traffic
flow is generated when communicating components are on
different physical nodes. Compromising non-core nodes only
degrades the system’s performance, while the system loses
its availability when all core nodes are comprised. We
further assume that if a physical node is compromised, all
the components that reside on the node are compromised.

An attacker is a malicious entity whose goal is to com-
promise the system. We assume that attackers know
locations and connection topology of the physical nodes,
but initially have no information regarding which software
component(s) is or are deployed on a specific physical
node. We further assume that the only information that
is accessible to the attackers is system’s network traffic flow,
however, they cannot decipher message contents carried by
the communication flow.

Our main design objective is to maximize the time
required by attackers to comprise the system and at the
same time minimize the extra cost added to the system.

3.2 Defending Approach
Laprie [13] defines system’s availability as its readiness

for providing its correct service. In this paper, we relate
system’s availability improvement to the prolonged time
that an attacker needs to comprise the system.

As stated in earlier, in our model, not all components
are equally critical with respect to the system’s availability.
Therefore, the attacker who wants to succeed but not spend
too much time launching the attack (in order to escape
detection) will locate and target the physical nodes that
contains the system’s important or critical components.
When the system starts, attackers may have no or little
information regarding where different software components
are deployed. However, as time goes on, the attackers
will gather sufficient information from the communications
among components that leads them to the critical nodes
where the system’s core components reside. They make this
judgment based on the analysis of traffic pattern. However,
the precision with which an attacker can analyze the traffic
pattern determines the amount of information that he can
obtain from analysis [17].

To decrease the attacker’s traffic pattern analysis preci-
sion, we camouflage the real traffic flow among components.
In particular, we forward messages among components so
that the traffic flow among all the components appears more
similar and lure attackers away from correct traffic pattern
analysis. Although it is impossible to stop attackers’ crimi-
nal intention of comprising a system, if we are able to change
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attacker’s informed and targeted attack to random attack,
we effectively prolong the system system’s availability.

Clearly, using message forwarding is not the only way
to hide the real traffic flow. For instance, we can create
a dummy node that generate false traffics. However, with
dummy node approach, the dummy node itself could become
a single point of failure for the defending scheme — the
attacker will easily discover all core nodes once the dummy
node is identified; while adding more dummy nodes increases
resource costs and degrades system’s performance. Message
forwarding overcomes these shortcomings. It is easy to
implement and does not increase much resource need.

Assume there are total number of N software components
in the system and the allowed maximal number forwards
is f. For a message msg with destination component dest,
Algorithm 1 defines the process of message forwarding. The
algorithm is executed when a component receives a message.

Algorithm 1 Message Forwarding(N, f, dest,msg)

1: for i← 1 to f do
2: randomly generate a number j within [1, N ] except

the sender ID
3: if componentj = dest then
4: dispatch msg to destination component dest
5: return
6: else
7: forward msg to componentj
8: end if
9: end for

10: dispatch msg to destination component dest
11: return

Clearly, message forwarding adds communication cost to
the system. The larger the allowed maximal number of
forwards, the more redundant messages are added to the
system. To control the communication overhead generated
by the message forwarding, we have to constrain the maxi-
mal number of forwards to bound the overhead. Hence, the
question arises in deciding the optimal number of forwards
needed to sufficiently hide the real traffic pattern from
being discovered by attackers while maintaining the minimal
communication overhead.

3.3 Deciding Optimal Number of Forwards
Assume there are N components in the system. If the

maximal number of forwards is 0, messages are directly
sent to their destination components. Suppose without
forwarding, the number of messages each component sends
and receives is msgj,0, where 1 ≤ j ≤ N , and the number
of total messages communicated in the system is MSG0

=
PN

j=1msgj,0. When the maximal number of forwards

is f , as Algorithm 1 (line 2 to line 8) indicates that it is
possible that message reaches its destination without being
forwarded, or after traveling through some forwarding nodes.
When the message is forwarded, we assume the probability
that each component except the sender itself receives the
message is uniformly distributed. We use msgj,f to denote
the number of messages going through component j when
f number of forwards is allowed, where 1 ≤ j ≤ N , hence,
the number of total messages in the system is MSGf =PN

j=1msgj,f . In addition, we maintain the traffic flow
difference below a threshold α.

When the maximal number of forwards is f , there are
f + 1 outcomes that a message reaches destination compo-
nent from original sender according to Algorithm 1. The
probability of each outcome is listed as follows:

Case 1: The probability that a message reaches its
destination component through i forwards, where 0 ≤ i < f ,
and f is the maximal number of forwards allowed:

p0≤i<f = (
N − 2

N − 1
)i × 1

N − 1
(1)

Case 2: The probability that a message does not reach
its destination component through f forwards, rather it
is forced to reach its destination according to line 10 in
Algorithm 1.

pi=f = (
N − 2

N − 1
)f (2)

When a message is forwarded i times, there are totally
i + 1 messages. Therefore, for a given number of maximal
forwards f , the expected number of total messages is:

E(X = f) =

f−1X
i=0

(i+ 1)× p0≤i<f + (f + 1)× pi=f

=

fX
i=1

i

N − 1
× (

N − 2

N − 1
)i−1 + (f + 1)× (

N − 2

N − 1
)f

(3)

Hence, the total number of messages communicated within
the systems is

MSGf = MSG0 × E(X = f) (4)

For a component j, the total messages that can be
forwarded are all the messages in the system except the
ones that have itself as the destination. Hence, on average,
number of messages added to component j is

1

N − 1
× (E(X = f)− 1)× (MSG0 −msgj,0)

Hence, the total number of messages sent and received by
a component j is msgj,f =

msgj,0 +
1

N − 1
× (E(X = f)− 1)× (MSG0 −msgj,0)

(5)

Assume component h has the most traffic, while component
l has the least traffic in the system, and we want to maintain
the traffic flow difference is below the threshold α to avoid
attacker from quickly identifying the traffic pattern, i.e.,

msgh,f −msgl,f

MSGf
≤ α (6)

Therefore, in order to hide core components from being
discovered through traffic analysis, based on the (4), (5),
and (6), we shall ensure (7).

E(X = f) ≥ (msgh,0 −msgl,0)×N
(msgh,0 −msgl,0) + α× (N − 1)×MSG0

(7)
The following example illustrates the process of deciding

minimal number of maximal forwards for a distributed
software system.

Example 1: Assume a distributed system has 10 com-
ponents. Without message forwarding, the total traffic in
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the system is 1000 messages. There are two components
which have more traffic flow than the other components, and
each of these two component has 40% of the total number
of messages, and the other software components share the
rest of the messages averagely, which is 2.5% of the total
messages. The traffic different threshold α is set to be 5%.
We are to decide the minimum f so that the traffic difference
is not above the threshold. Solving (7) with the data above,
we get

E(X = f) ≥ 4.55 (8)

From (8), we know that if the expected number of messages
is larger than 4.55, the traffic flow difference among different
nodes are below the predefined threshold. Based on Equa-
tion (3), we have

E(X = 0) = 1.00; E(X = 1) = 1.89;

E(X = 2) = 2.68; E(X = 3) = 3.38;

E(X = 4) = 4.01; E(X = 5) = 4.56;

It is easy to see that Equation (3) is a monotonically
increasing function. As can be seen from the above
calculation, the optimal value of maximal forwards is 5.

4. SIMULATION RESULTS
In this section, we discuss the simulation results. The

purpose of the simulations is to investigate the relationship
between the number of forwards and traffic difference reduc-
tion among components.

In this experiment, there are ten components in the
system, and two of them have high traffic flow. In partic-
ular, we assume that the initial total number of messages
without forwarding is 1000, and each of the two high
traffic components has 40% of the total messages, and the
rest components evenly receive the last 20% of the total
messages, which is 2.5% of total messages on each low
traffic components. When a component receives or sends
a message, it increases the number of messages.
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Figure 1: Traffic difference deduction based on the
maximal number of forwards

We set the maximal number of forwards from 0 to 10
and Figure 1 shows the traffic difference reduction between
highest traffic component and lowest traffic component. As
shown in Figure 1, when the number of allowed message
forwarding increases, the traffic difference decreases to
around 18% with one forwarding, and reaches below α =

5% when the maximal number of forwards is 5. The figure
also indicates that when the allowed number of forwards
increases beyond 5, the traffic difference does not decrease
much, Hence, under the test setting, the optimal number of
forwards is 5 which is consistent with the analysis given in
Example 1 in Section 3.
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Figure 2: Percentage of messages added to the
system

In addition, as the number of forwards increases, the
redundant messages added into the system also increase.
From Figure 2, we can see that such increase is almost
linear. When the maximal number of forwards is 10, the
amount of redundant messages in the system is six times
more than original messages. Therefore, constraining the
maximal number of forwards is crucial in reducing network
bandwidth consumptions.
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Figure 3: Traffic difference reduction under different
system scales

The second set of experiments is to investigate the
scalability of our approach. In particular, we create a system
with total 10, 20, 30, ... , 100 components, respectively.
There are two high traffic components in each group. In
this experiment, we still assume that each of the high traffic
components contributes 40% of the total messages. There
are totally 10,000 messages communicated in the system
initially. From Figure 3 we can see that the traffic difference
between the highest traffic component and lowest traffic
component decreases as the number of maximal forwards
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increases. For example, for the system which has 100
components, the traffic difference drops to around 20% when
the maximal forward is one, and reaches around 4% when
the maximal forward is nine. The empirical data indicates
that the approach scales well.

From the experiments presented above, it is clear that
through message forwarding, we can effectively disguise
critical components from attackers through preventing the
attackers recognizing real traffic patterns. However, the
simulation results also show that the high availability is
at the cost of increased network traffic flow. Therefore,
depending on the system run-time environment, we shall
intelligently choose when and for how many times to execute
message forwarding.

5. CONCLUSION
We have presented a novel approach to improve system

availability when the system is under intentional attacks. It
is to camouflage real messages and prevent attackers from
correct traffic analysis that may reveal the location of more
important software components and thus prolongs the time
for attackers to comprise the system.

The theoretical analysis helps to decide an optimal num-
ber of forwards based on the traffic difference threshold that
attackers use in identifying the traffic pattern. However, the
message forwarding may not be necessary if the system’s
running environment is safe. For our future work, we
will integrate intrusion detection techniques into our model
and dynamically decide when and for how many times
to execute message forwarding based on runtime risk and
reduce unnecessary amount of redundant messages.
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